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Effect of Uniform Suction on MHD Flow Through 
Porous Medium Due To A Rotating Disk 

S.E.E. Hamza 
 

Abstract— The present paper is devoted to the study of the magnetohydrodynamic (MHD) flow of an incompressible viscous and 
electrically conducting fluid due to an infinite porous rotating disk at small distance from a porous medium. A uniform suction is applied 
through the surface of the disk. The domain of flow is divided into two regions: the free fluid region between the disk and the porous 
medium and the porous region. The governing equations of motion, in terms of cylindrical polar coordinates, are reduced to a set of 
nonlinear ordinary differential equations by similarity transformations and then solved by using the approximation method. The solutions 
are obtained by solving Navier-Stokes equations in the free fluid region, and Brinkman equations in the porous region with adequate 
boundary conditions at the interface. Graphical representation of the results are outlined for different values of Hartmann number, suction 
parameter and the porosity of the medium. The effect of these parameters upon the velocity fields are examined. The torque acted on the 
disk have been also computed. The main result of the present work is that, the presence of the magnetic field effects on the velocity field in 
both flow regions. This effect depends on the suction process. It is also noticed that the magnetic field reduces the velocity components, 
while suction process increases them. Therefore, the torque due to viscous friction acting on the disk increases with increasing the 
magnetic field strength.  

Index Terms—MHD, Porous medium, rotating disk, suction, Reynolds number , Hartmann number, Brinkman equations. 
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1 INTRODUCTION                                                                     
ince many decades, flow of a viscous fluid through and 
past a porous medium have been the subject of intensive 
studies, specially at recent years, due to its many engineer-

ing and scientific applications. Examples of these applications 
are extraction process of fluid from the porous ground and in 
lubrication of porous bearings [1]. Moreover, It has many ap-
plications in biomedical and chemical engineering for filtra-
tion and purifications processes. Cunningham and Williams 
[2] had reported several geophysical applications of flow in 
porous medium, viz. porous roller and its natural occurrence 
in the flow of rivers through porous banks and the flow of oil 
through underground porous rocks. 

Probably for the first time, the flow due to an infinite plane 
rotating disk was discussed by Karman [3]. He suggested a 
tractable method to transform the set of partial differential 
equations governing the flow to nonlinear ordinary differen-
tial equations to be simple in mathematical handling. The flow 
due to a rotating infinite radius disk with uniform suction at 
the disk has been discussed by Stuart [4] and obtained numer-
ical solutions for small values of suction and asymptotic solu-
tions for large values of suction. Rizvi [5] examined the MHD 
flow over a rotating disk in the presence of weak magnetic 
field. Effects of an axial magnetic field on the flow about a ro-
tating disk were studied also by Kakutani [6]. Pande [7] ana-
lyzed a series solution for the effects of an axial magnetic field 
and suction (injection) on the flow about an insulated rotating 
disk in the presence of strong suction and a weak magnetic 
fields. Purohit and Bansal [8] considered the flow of an in-
compressible viscous and incompressible electrically conduct-
ing fluid between two rotating and a stationary naturally 

permeable disks. Ariel [9] discussed the numerical behavior of 
MHD flow in the vicinity of a rotating disk. Attia [10] consid-
ered time varying rotating disk flow and heat transfer of a 
conducting fluid with suction or injection. 

Darcy [11] initiated the theory of flowing through a porous 
medium. For the steady flow, he assumed that viscous force 
were in equilibrium with external forces due to pressure dif-
ference and body forces. Later on Brinkman [12] proposed 
modification to Darcy's law of porous medium. In most of 
these examples, the flow field is divided into two regions, 
namely (I) free fluid region, and (II) porous region, where the 
fluid flows through a porous medium. To link flows in the two 
regions, certain matching conditions are required at the inter-
face of the two regions. This type of couple flows, with differ-
ent geometries and with several kinds of matching conditions, 
has been examined by several authors, viz. William [13] and 
Ochoa-Tapia et al. [14], [15]. Steady flow between a rotating 
and a stationary naturally permeable disks had been studied 
by Verma and Bhatt [16]. Srivastava et al. [17] studied the flow 
in a porous medium induced by torsional oscillation of a disk 
near its surface. The flow of viscous incompressible fluid con-
fined between a rotating disk and a porous medium was ana-
lyzed by Chaudhary et al. [18]. 

An analysis has been made to investigate the effects of uni-
form magnetic field on the forced flow of a conducting viscous 
fluid through a porous medium induced by a rotating disk; 
Sharma et al. [19]. Recently, Dufour and Soret effects on un-
steady MHD convective heat and mass transfer flow due to a 
rotating disk, has been investigated by Maleque [20]. 

From this survey, it is clear that the problem of fluid flow 
generated within a porous medium by a rotating disk near it is 
being more significant for application in technology. Hence, in 
the present analysis, it is proposed to study the effects of uni-
form suction on MHD flow through a porous medium due to 
a rotating disk. The region between them is filled with an in-
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compressible electrically conducting viscous fluid. We con-
fined our attention for the effects of an axial magnetic field 
and suction on both the velocities and the torque on the disk 
in the two domain flow regions.  

2 FORMULATION OF THE PROBLEM 
We consider the steady flow of an incompressible viscous elec-
trically conducting fluid confined between a rotating disk and 
a porous medium. The cylindrical polar coordinates ( zr ,, θ ) 
are the most suitable system of coordinates for the present 
problem. So, let the disk of radius r lie in the plane dz =  and 
rotates uniformly with constant angular velocity Ω  about the 
z-axis perpendicular to its own plane; figure 1. Mass transfer 
from the fluid may take place at the disk surface by direct suc-
tion. The rate of mass removal ow  is uniform at all points on 
the disk surface. An external uniform magnetic field with con-
stant intensity oB  is applied perpendicular to the surface of 
the disk, i.e. zBB o ˆ= . The induced magnetic field is assumed 
to be small in comparison with the applied magnetic field.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The steady flow field in the free region is governed by the 
Navier-Stokes equation; namely, 

BJvpvv ×+∇+−∇=∇⋅ 2µρ )( ,           (1) 

where ρ is the density, υ  the velocity vector, p pressure, µ the 
coefficient of viscosity, 2∇  the Laplacian operator, J  the cur-
rent density vector and B  the magnetic field vector. The po-
rous medium is fully saturated with fluid. The magnitude of  
velocity components in the porous medium are very small so 
their squares and higher powers are neglected and a term ac-
counting for the resistance by porous material is added. 
Hence, we get the following Brinkman equation [12] which 
governs the flow of a viscous fluid in a porous medium: 

02 =×+−∇+∇− BJV
k

VP e
µµ ,    (2) 

where V  is the velocity vector, P the pressure, eµ  the effec-
tive viscosity of Brinkman flow model, and k is the permeabil-
ity of porous medium. 

3 BASIC GOVERNING EQUATIONS 
As mentioned above, we divide the flow region into two 
zones. Zone I is the region defined as ( dz ≤≤0 ) in which the 
fluid flows freely and its motion is governed by Navier-Stokes 
equation, (1). Zone II ( 0≤z ) is the region in which the fluid 
flowing through the pores of porous material and its motion is 
governed by Brinkman equation, (2). The interface between 
the two zones is at 0=z . The velocity components (u, υ, w) in 
the free region and (U, V, W) in the porous region are taken to 
be in the direction of (r, θ, z) respectively. 

The Navier-Stokes and continuity equations for the MHD 
flow in region I, are given by: 
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The Brinkman and continuity equations in region II are given 
by: 
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The appropriate boundary conditions of the aforementioned 
systems are: 
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Conditions at the interface of the porous medium and free 
fluid, 0=z , have been investigated by Ochoa-Tapia and 
Whitaker [14], [15], show that the equations require a discon-
tinuity in the shearing stresses while retaining the continuity 
of the velocity components and the normal stress. Hence, the 
following conditions at the interface are required: 
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where β is a dimensionless constant of order one with positive 
or negative sign. 

The set of partial differential equations encountered  in (3) 
through (5) represents a formidable mathematical problem. 
We seek the solutions of (3) and (4) under the boundary condi-
tions (5), in the following form: 
In zone I: 

)(),(),(),( ηΩµηΩηΩυηΩ 12 ppfdwgrfru −=−==′=       (6a) 
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(II) Porous medium 

 
     Fig. 1. Physical model and coordinates.  
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In zone II: 
)(),(),(),( ηΩµηΩηΩηΩ 12 PPFdWGrVFrU −=−==′= ,    (6b) 

On substituting (6a) and (6b) into (3) to (5), we obtain the fol-
lowing set of equations: 
In zone I: 

( )222 2 gffffmf −′′−′=′−′′′ Re ,                                                   (7a) 

( )gfgfgmg ′−′=−′′ Re22 ,                                                            (7b) 
fffp ′′+′=′ 241 1e .                                                                        (7c) 

In zone II: 
FF ′=′′′ 2α ,                                                                                     (8a) 
GG 2α=′′ ,                                                                                     (8b) 

FFP 2
1 22 δγ −′′=′ ,                                                                         (8c) 

where dz=η  is a non-dimensional distance along the axis of 
rotation and the prime denotes differentiation with respect to 
η. The corresponding boundary conditions become: 
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The physical parameters appearing in (7) to (9) are: 
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where S is the suction parameter, δ the Darcy number, Re the 
Reynolds number, γ the dimensionless viscosity and m the 
magnetic induction parameter or Hartmann number. Using 
the expressions of velocity components in both zones, the 
matching conditions, (5b), at the interface can be respectively 
written as: 
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Notice that, (7c) and (8c) are decoupled from (7a) and (8a), and 
once )(ηf  and )(ηF  have been determined, )(η1p  and )(η1P  
can be obtained by solving (7c) and (8c). 

4 SOLUTION OF THE PROBLEM 
The solution of the problem requires the determination of the 
velocity field components v  and V  from (7) and (8) subject to 
the boundary conditions (9) and (11); respectively. 

In zone II, the solution of (8a) and (8b) satisfying the 
boundary conditions 9 are given by: 
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The constants A, B and C are to be determined by matching 
conditions at the interface, 0=η . 

In zone I, the solution of the governing equations are ob-
tained by the perturbation method. The Reynolds number Re, 
defined in terms of the angular velocity Ω, is assumed to be 

small; i.e. 1<<1e . Therefore, the unknown functions, f and g, 
can be expanded in successive powers of Re as the following: 
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In matching f and g with F and G at the interface, the constants 
A, B and C can be expanded in powers of Re as: 
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Accordingly, the solution of (7a), (7b), (8a) and (8b) are given 
as: 
In zone I: 
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In zone II: 
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where the values of the constants A, B and C satisfying the 
boundary conditions 9 and matching conditions 11 at the in-
terface have been calculated and they are given below. 
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5 RESULTS AND DISCUSSION 
The system of non-linear ordinary differential equatins (7), (8) 
is solved under the conditions given by (9) and (11) for the 
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three components of the flow velocity and pressure. From the 
solution of the present problem it is clear that, the MHD flow 
depends on four parameters; namely, the magnetic parameter 
m, the suction parameter S, Darcy number δ and the dimen-
sionless viscosity γ. For 0=S  we have the case of an imper-
meable rotating disk. Insight into the physical occurrences 
within the flow field can be obtained by studying of the veloci-
ty profiles. 
 
5.1 Velocity Distributions 
Firstly, we turn our attention to the distribution of the axial 
velocities )(ηF  and )(ηf  in porous and free zones respective-
ly. The effect of the magnetic parameter m on the axial velocity 
are shown in figures 2a and 2b. In these figures, 20.Re = , 

3=δ , 51.=γ  and 50.=β . The negative values of the axial 
velocity indicate an inflow from the porous medium toward 
the interface and then toward the disk surface. Consider now 
the case of an impermeable disk; 0=S . The rotating disk acts 
like as a fan, drawing fluid axially inward from the surround-
ings toward the disk surface. However, because the surface is 
solid, the inward fluid finds its path blocked, so it must be 
turned and discharges in the radial direction where there is no 
obstruction. Thus there is a close correlation between the axial 
inflow and the radial outflow. So, in figure 2a, we see that the 
negative velocity of inflow starting from its largest value at 
large negative η and decreasing steadily as we approach the 
disk due to fluid escape into the radial direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Consider now the application of the suction process at the 
disk surface, 2−=2  as shown in figure 2b. Beside the fanlike 
pumping of the rotating disk, there is an additional pumping 
due to the suction. So, the quantity of fluid drawn in from the 
surroundings increases. The inflowing fluid has two parts; it 
may continue through the disk's holes which is being rather 
possible, specially at high suction, or it may reroute into the 
radial direction. As a consequence, )(ηF  tends to become al-
most constant as we enter the porous medium, −∞→η . It is 
clear that, figures 2a and 2b, the effect of the magnetic parame-

ter m on the axial velocity is to increase the velocities in both 
zones. Hence it is concluded that magnetic field enhances the 
fluid motion. 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 3 shows the behavior of the radial velocities f ′  and 
F ′  against η in both zones I and II respectively for various 
values of m and 2−=2 . Since the radial velocity is zero at the 
disk surface and in ambient fluid, there must be a maximum 
value denoted by .maxf ′  in zone I. This maxima is being posi-
tive because of the radial flow is always outward along the 
disk. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Owing to figure 3, we see that the radial velocity increases 
monotonically with deceasing η  until reaching maxima, and 
then decays exponentially as we enter the porous medium 
until vanishing at a large distance from the interface, −∞→η . 
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Fig. 2a. Axial velocities f and F at 0=S , 251150 ,.,,.=m  
(bottom to top). 
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Fig. 2b.  Axial velocities f  and F at 2−=2 , 251150 ,.,,.=m  
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Fig. 3. Radial velocities f ′  and F ′  at 2−=2 , 

251150 ,.,,.=m  (top to bottom). 
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As the value of m decreases the maxima .maxf ′  moves away 
from the disk and the magnitude of the radial velocities f ′  
and F ′  increase. 

The tangential velocity is directly driven through the action 
of viscosity by the rotation of the disk. Figure 4a shows the 
distribution of the tangential velocities g and G as a function of 
η for different values of m at 2=2 . The magnetic field induc-
es a magnetic force in the tangential direction which opposes 
the tangential fluid velocity. So, the tangential velocities are 
everywhere reduce with increasing m. From figure 4b we see 
that, the suction process gives rise to the profile points. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2 Shear Stress And Torque 
From the practical point of view, a torque is required to main-
tain a steady rotation of the disk which is the action of viscosi-

ty in the fluid adjacent to the disk. Such a torque is needed to 
overcome the tangential shear stress imposed by the fluid on 
the disk surface. The tangential shear θτ z  at the surface, dz = , 
is achieved by applying the Newtonian shear formula: 
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In terms of the transformation variables of (6a) and (6b), this 
becomes 

)(1g
d

r
z ′=

Ωµ
τ θ ,                                                                         (17b) 

where )(1g′ , is found from the solution given in (15b) as: 
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The torque M required to overcome the tangential shear on 
one side of the rotating disk [21] is 
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where or  is the disk radius. Introducing (17b) and integrating, 
we get 
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Therefore, both tangential shear θτ z  and the torque M are 
proportional to the slope )(1g′  of the tangential velocity pro-
file; Table 1. It is shown that the effect of suction is to increase 
the tangential shear and the torque requirements. These re-
sults reflect the change in tangential velocity profile as previ-
ously discussed. 

Moreover, there is also a surface shear stress, rzτ , in the ra-
dial direction. Again, using the Newton shear relations and 
then introducing the variables of the analysis, we have: 
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Another quantity of interest is the inflow )(−∞F  induced in 
the fluid of porous medium; i.e. region II by the motion of the 
disk. These values, which constitute the horizontal portions of 
the profiles of figures 2a and 2b, have been listed in Table 1. 
The strong MHD effect which gives rise to a sharply decreased 
flow is clear evidently in the table. The table shows that )(1g′  
increase with an increasing S, m, γ and δ while )(−∞F  increas-
es with increasing S but decrease with increasing m, γ and δ. It 
is observed that, if we take 1=γ , 0=β , 0=m  and 0=S  in 
our analysis and 1== λφ , 0=α  in the work of Srivastava 
and Barman [22], the results of both the studies are compara-
ble. Further, it is noted that if we take 0=S  and 0=m  in our 
analysis, the results reduced to that of Chaudhary et al. [18]. 
 

TABLE 1 EFFECT OF  S, M,  γ, AND δ ON )(1g′ AND ON AXIAL  
VELOCITY AT INFINITY )(−∞F  

6 CONCLUSION  
In the present work, the steady MHD flow of a viscous incom-
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 Fig. 4a. Tangential velocities g and G at 2=2 , 
251150 ,.,,.=m  (top to bottom). 
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pressible electrically conducting fluid due to an infinite porous  
rotating disk at small distance from a porous medium is in-
vesttigated. A uniform suction is applied through the surface 
of the disk. It is clear that the flow depends on the parameters 

S, m, δ and γ. The table and figures presented above show the 
effect of these parameters on the fluid flow. By looking into 
the details of the flow field, the following trends are strongly 
evident in all of these figures: 

1. The rotation of a disk near a porous medium extracts 
the fluid from the porous medium. 

2. As the magnetic field strength increases, the fluid ve-
locity decreases. 

3. For any value of the magnetic parameter m, axial ve-
locity toward the disk increases with increasing of the 
suction parameter. 

4. The axial velocity component at a large distance from 
the interface does not vanish. Therefore, a boundary 
layer is formed at the interface. 

5. Torque due to viscous fraction acting on the disk in-
creases with increasing the magnetic field strength for 
any value of suction. 
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S M γ 
δ/)(g 1′  δ/)(F −∞−  

3 5 3 5 

0 
0.5 1.2 0.7971 0.8823 0.0314 0.0267 

2 0.9194 0.9753 0.0318 0.0259 

1 1.2 1.1123 1.1662 0.0121 0.0098 
2 1.1951 1.2327 0.0109 0.0089 

-1 
0.5 1.2 0.9795 1.0737 1.0314 1.0267 

2 1.1137 1.1728 1.0318 1.0259 

1 1.2 1.3012 1.3603 1.0121 1.0098 
2 1.3912 1.4309 1.0109 1.0089 

-2 
0.5 1.2 1.1618 1.2650 2.0314 2.0267 

2 1.3080 1.3704 2.0318 2.0259 

1 1.2 1.4901 1.5543 2.0121 2.0098 
2 1.5874 1.6291 2.0109 2.0089 
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